# Kemet 

Precision Lapping | Polishing | Cleaning | Materialography

## DEBURRING \& POLISHING TOOLS



## Contents

XEBEC Brush ${ }^{\text {TM }} \quad$ 1-14
Holders and Sleeves 15-18
XEBEC Back Burr Cutter and
Deburring Tool Path ${ }^{\text {TM }}$
19-22
XEBEC Burrless Chamfering Cutter ${ }^{\text {TM }} \quad$ 23-25
XEBEC Stone ${ }^{\text {TM }} \quad 26-28$
Optional Tools 29
Hand Held Consumables 30-32

## Ordering Information

## Telephone:

+44(0)1622 607507
+44(0)1622 755287
Sales Desk - Direct Line Enquiries \& Technical Support

Email:
sales@kemet.co.uk

## Website:

www.kemet.co.uk

## Automotive

CNC deburring of inverter case


Material: ADC12 Follows: Face milling Tool:
XEBEC Brush Surface A32-CB25M, p. 1

CNC removal of coating on combustor part


Material: Ceramics
Follows: Face milling
Tool:
XEBEC Brush Surface
A11-CB15M, p. 1

CNC deburring of input shaft


Material: SCM
Follows: Drilling
Tool:
XEBEC Brush Crosshole
CH-A12-7M-TL, p. 8

Manual polishing of tire mold


Material: Aluminum Follows: Ball end milling Tool:
XEBEC Brush Surface End Type A11-EB06M, p. 6

CNC deburring of differential case


Material: FCD
Follows: Drilling
Tool:
Back Burr Cutter \& Deburring
Tool Path, XC-78-A, p. 19

CNC deburring of pinion gear


CNC polishing of metal mold for car body panel


Material: SKD11
Follows: End milling
Tool:
XEBEC Brush Surface
A32-CB25M \& A11-CB25M, p. 1

## CNC deburring of yoke



Material: SCM
Follows: Drilling
Tool:
Back Burr Cutter \& Deburring
Tool Path, XC-58-A, p. 19

CNC deburring of camshaft


Material: FCD
Follows: Drilling
Tool:
Back Burr Cutter \& Deburring
Tool Path, XC-38-A, p. 19

Chamfering of exterior part


Material: CFRP
Follows: Tapping
Tool:
Burrless Chamfering Cutter
XC-C-06-N, p. 23

## Aerospace

CNC polishing of turbine blade


Material: SUS630
Follows: Ball end milling
Tool:
XEBEC Brush Surface
A32-CB25M \&
A11-CB25M, p. 1

Manual deburring of hydraulic manifold


Material: Aluminum
Follows: Drilling
Tool:
XEBEC Stone Flexible Shaft
CH-PM-6B, p. 26

Manual deburring of shaft


Material: Aluminum
Follows: Casting
Tool:
XEBEC Stone Mounted Point
AX-PM-6T, p. 28

## Orthopaedic Medical Devices

CNC polishing of artificial hip joint


Material: CoCrMo
Follows: Turning
Tool:
XEBEC Brush Surface
A13-CB06M, p. 1

CNC deburring of osteosynthesis screw


Material: Titanium
Follows: End milling
Tool:
XEBEC Brush Surface End Type A11-EB06M, p. 6

CNC deburring of spinal implant


Material: PEEK resin
Follows: End milling
Tool:
Back Burr Cutter \& Deburring
Tool Path, XC-18-A, p. 19

CNC deburring of pipe


CNC deburring of shaft
Material: SCM
Follows: Threading
Tool:
XEBEC Brush Wheel Type
W-A11-50, p. 13


CNC roughing of brake disc


Material: SPHC
Follows: Turning
Tool:
XEBEC Brush Surface
A21-CB25M, p. 1
CNC deburring of slide cylinder


Material: Aluminum Follows: End milling Tool:
XEBEC Brush Surface A21-CB25M, p. 1
CNC deburring of gearbox


Material: FC250
Follows: Face milling Tool:
XEBEC Brush Surface
A32-CB60M, p. 1

## XEBEC Brush ${ }^{\text {TM }}$ Surface Patented

Deburring, cutter mark removal, and surface polishing

## Applicable burr size

Burr thickness $\leq 0.2 \mathrm{~mm}$
(Burrs this size can be bent by fingernails)


## Applicable equipment

This tool can be mounted on equipment shown below.


Machining center


Lathe (with live tools)


Dedicated machine


Robot

Brushes

| Brush (color) | Product code | Brush diameter (mm) | Bristle length $\ell$ (mm) | Matching sleeve | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A13 (pink) | A13-CB06M | ¢6 | 30 | S06M | 1 |
|  | A13-CB15M | ф15 | 50 | S15M-P | 1 |
| A11 (red) | A11-CB06M | \$6 | 30 | S06M | 1 |
|  | A11-CB15M | ф15 | 50 | S15M-P | 1 |
|  | A11-CB25M | \$25 | 75 | S25M | 1 |
|  | A11-CB40M | \$40 | 75 | S40M-SD10 | 1 |
|  | A11-CB60M | \$60 | 75 | S60M | 1 |
|  | A11-CB100M | \$100 | 75 | S100M | 1 |
| A21 (white) | A21-CB06M | ¢6 | 30 | S06M | 1 |
|  | A21-CB15M | ф15 | 50 | S15M-P | 1 |
|  | A21-CB25M | \$25 | 75 | S25M | 1 |
|  | A21-CB40M | \$40 | 75 | S40M-SD10 | 1 |
|  | A21-CB60M | \$60 | 75 | S60M | 1 |
|  | A21-CB100M | \$100 | 75 | S100M | 1 |
| A32 (blue) | A32-CB06M | ф6 | 30 | S06M | 1 |
|  | A32-CB15M | \$15 | 50 | S15M-P | 1 |
|  | A32-CB25M | \$25 | 75 | S25M | 1 |
|  | A32-CB40M | ф40 | 75 | S40M-SD10 | 1 |
|  | A32-CB60M | \$60 | 75 | S60M | 1 |
|  | A32-CB100M | \$100 | 75 | S100M | 1 |

- Bristle bundles are embedded in a single line on the periphery (except for $\phi 6$ type).
- Brush size is approximate as the tip expands with rotation.


## Tool composition

Brush and sleeve are sold separately.
Assemble brush and sleeve before use.

Sleeve


Brush


Sleeves

| Product code | Brush dia. <br> $(\mathrm{mm})$ | External dia. Dc <br> $(\mathrm{mm})$ | Shank dia. Ds <br> $(\mathrm{mm})$ | Overall length L <br> $(\mathrm{mm})$ | Shank length ls <br> $(\mathrm{mm})$ | Matching brush |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| S06M | $\phi 6$ | $\phi 10$ | $\phi 6$ | 70 | 29 | Fig. |
| S15M-P | $\phi 15$ | $\phi 18.5$ | $\phi 6$ | 90 | 29 | A13/A11/A21/A32-CB15M |
| S25M | $\phi 25$ | $\phi 30$ | $\phi 8$ | 140 | 2 |  |
| S40M-SD10 | $\phi 40$ | $\phi 45$ | $\phi 10$ | 140 | 30 | A11/A21/A32-CB25M |
| S60M | $\phi 60$ | $\phi 65$ | $\phi 12$ | 150 | 30 | A11/A21/A32-CB40M |
| S100M | $\phi 100$ | $\phi 110$ | $\phi 16$ | 162 | 35 | A11/A21/A32-CB60M |

XEBEC Brush uses unique abrasive ceramic fiber material instead of abrasive grain. Each bristle consists of 1,000 ceramic fibers that work as cutting edges. Overwhelming grinding power, consistent cutting performance, and no deformation enables CNC deburring immediately after machining operations inside the same machine tool.


## High grinding power

The content ratio of ceramic fiber is approximately 80\%. Cutting edges on the brush tips offer excellent grinding power.


## No deformation

Maintains its straight shape and does not spread out like an old toothbrush. Easy to manage on mass production lines.

3. Steel wire brush
2. Abrasive nylon brush
4. Brass wire brush

## Brush selection



- Not all brush colors are available in all sizes.

■ HRSA (heat resistant super alloy)

## Consistent grinding performance

New cutting edges are always exposed. Consistent grinding performance throughout due to the uniform structure of the fiber.


## Optimal for polishing

The high grinding power of ceramic fiber makes this tool optimal for polishing. Achievable surface roughness is $\mathrm{Ra}=0.1 \mu \mathrm{~m}(\mathrm{Rz}=0.4 \mu \mathrm{~m})$.


Deburring


Polishing


Higher quality automated deburring
Cylinder head


Material: Aluminum Follows: Face milling Tool: A11-CB100M

Before
Abrasive nylon brush was used. It was time-consuming and not able to remove all burrs.

After
All burrs are removed by high grinding power. Quality is stable. The cycle time is shortened by a high feed rate.

## How to use

## Rotational speed

Recommended parameters differ depending on brush size. Refer to the chart below for starting parameters for each brush size.


## Rotational direction

Set the rotational direction so that the brush pushes the burrs up from below.


Automation of time-consuming polishing

## Metal mold



Before
40 minutes hand polishing per workpiece. Uneven quality resulted in complaints.

After
Shortened the polishing time to one minute per workpiece by automation. Achieved uniform polishing quality.

Material: Hard material Follows: End milling Tool: A11-CB25M

## Feed rate - Deburring



## Depth of cut - Horizontal burrs



## Starting parameters

|  | Rotational speed ( $\mathrm{min}^{-1}$ ) |  |  | Depth of cut (mm) |  |  | Feed rate (mm/min) |  |  | Brush protrusion (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product code | Deburring | Cutter mark removal, polishing | Maximum | Vertical burrs | Horizontal burrs | Cutter mark removal, polishing | Burr thickness 0.05 mm | Burr thickness 0.1 mm | Cutter mark removal, polishing | Deburring | Cutter mark removal, polishing |
| A13-CB06M <br> A11-CB06M <br> A21-CB06M | 8000 | 10000 | 10000 | 0.5 | 0.5 | 0.3 | 4000 | 2500 | 250 | 10 | 10 |
| A32-CB06M | 8000 | 10000 | 10000 | 0.3 | 0.3 | 0.3 | 4000 | 2500 | 250 | 10 | 10 |
| A13-CB15M | 4800 | 6000 | 6000 | 1.0 | 1.0 | 0.5 | 4000 | 2500 | 450 | 10 | 10 |
| $\begin{aligned} & \text { A11-CB15M } \\ & \text { A21-CB15M } \\ & \text { A32-CB15M } \end{aligned}$ | 4800 | 6000 | 6000 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 450 | 10 | 10 |
| $\begin{aligned} & \text { A11-CB25M } \\ & \text { A21-CB25M } \\ & \text { A32-CB25M } \\ & \hline \end{aligned}$ | 4000 | 5000 | 5000 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 700 | 15 | 10 |
| A11-CB40M <br> A21-CB40M <br> A32-CB40M | 2400 | 3000 | 3000 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 800 | 15 | 10 |
| A11-CB60M <br> A21-CB60M <br> A32-CB60M | 1600 | 2000 | 2000 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 850 | 15 | 10 |
| A11-CB100M A21-CB100M A32-CB100M | 960 | 1200 | 1200 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 850 | 15 | 10 |

- Plastic workpieces may deform or discolor. If this occurs, reducing rotational speed to approximately $10 \%$ of the starting parameter may solve the problem.


## XEBEC Brush ${ }^{\text {TM }}$ Surface

How to select

Refer to the charts below and select the brush color based on the workpiece material, burr thickness and surface roughness.

Deburring

| Workpiece material | Resin | Copper, Brass |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Aluminum |  |  |
|  |  | Steel |  |  |
|  |  | $\vdots$ Stainless steel |  |  |
|  |  |  |  | HRSA steel |
|  |  |  |  | Cast iron |
|  |  |  |  | Hard material |
| Burr size | Micro fine burrs |  |  |  |
|  |  | Burr thickness ( $\leq 0.1 \mathrm{~mm}$ ) |  |  |
|  |  |  | Burr thickness (0.1-0.2mm) |  |
|  |  |  |  |  |
| Brush (color) | A13 (pink) | A11 (red) | A21 (white) | A32 (blue) |
| Grinding power |  |  |  | $\rightarrow$ High |

Cutter mark removal and polishing

| Workpiece <br> material | Copper, Brass |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Aluminum |  |  |

## Machining adjustments - Burrs remain

Take the following actions, if burrs remain despite using the recommended depth of cut for the given burr size.

## 1. Increase rotational speed

Increase the rotational speed to the maximum.

| Brush size <br> $(\mathrm{mm})$ | Product code | Initial rotational <br> speed <br> $\left(\mathrm{min}^{-1}\right)$ | Maximum <br> rotational <br> speed <br> $\left(\mathrm{min}^{-1}\right)$ |
| :---: | :--- | :---: | :---: |
| $\phi 6$ | A13-CB06M, A11-CB06M, A21-CB06M, A32-CB06M | 8000 | 10000 |
| $\phi 15$ | A13-CB15M, A11-CB15M, A21-CB15M, A32-CB15M | 4800 | 6000 |
| $\phi 25$ | A11-CB25M, A21-CB25M, A32-CB25M | 4000 | 5000 |
| $\phi 40$ | A11-CB40M, A21-CB40M, A32-CB40M | 2400 | 3000 |
| $\phi 60$ | A11-CB60M, A21-CB60M, A32-CB60M | 1600 | 2000 |
| $\phi 100$ | A11-CB100M, A21-CB100M, A32-CB100M | 960 | 1200 |
| $\phi 125$ | A11-CB125M, A21-CB125M, A32-CB125M | 800 | 1000 |
| $\phi 165$ | A11-CB165M, A21-CB165M, A32-CB165M | 600 | 750 |
| $\phi 200$ | A11-CB200M, A21-CB200M, A32-CB200M | 480 | 600 |

## 2. Check the rotational direction of the brush

XEBEC recommends cutting upwards so that the bristles lift burrs up.

## 3. Change the brush color

Check whether the brush color is suitable for the workpiece material and burr size.
The grinding power of colors increases as follows: pink < red < white < blue.

## Machining adjustments - Edges too rounded

It is not possible to remove burrs with brushes without rounding edges to some extent.
Take the following actions to improve edge sharpness.

## 1. Increase feed rate

To make a sharper edge, increase the feed rate in $1,000 \mathrm{~mm} / \mathrm{min}$ increments within the range where burrs can be removed. Increasing the feed rate also helps reduce the cycle time.

## 2. Decrease rotational speed

Decrease rotational speed in 10 to 20 percent increments within the range where burrs can be removed.

## 3. Check the brush color

Check whether the brush color is suitable for the workpiece material and burr size.
Rounding of edges increases as follows: pink < red < white < blue.

## Reference data - Tool life

## Example 1

| Material | Aluminum die-casting |
| :--- | :---: |
| Follows | Face milling |
| Burr thickness | 0.1 mm |
| Tool path length | $1000 \mathrm{~mm} /$ piece |


| Tool | A11-CB25M |
| :--- | :---: |
| Rotational speed | $4000 \mathrm{~min}^{-1}$ |
| Feed rate | $2400 \mathrm{~mm} / \mathrm{min}$ |
| Depth of cut | 1 mm |
| Wear amount | 50 mm out of 75 mm |


| Tool life | $10 \mathrm{~km}(10000$ pieces $)$ |
| :--- | :--- |



Example 2

- Tool life varies greatly depending on the material, machining conditions, and burr size and direction.

■ The above data is not guaranteed. Please use as a guide.

## Machining adjustments - Surface roughness worsens

It may be possible to improve the surface finish. Try the following.

## 1. Check the brush color

The ability to improve surface roughness is inversely proportional to the grinding power, meaning that A13 (pink) achieves the best surface roughness, followed by A11 (red), A21 (white), and A32 (blue). Make sure to select the appropriate brush color based on the workpiece material and target surface roughness.

## 2. Wet machining

The brush can be used for both dry and wet (oil-based and water-soluble) machining. Wet machining may improve surface roughness and tool life.

## 3. Increase the number of passes

When comparing with the same cycle time, increasing the number of passes makes a bigger difference than decreasing the feed rate.

## Example

| Rotational speed | $4000 \mathrm{~min}^{-1}$ |
| :--- | :---: |
| Depth of cut | 0.5 mm |
| Feed rate | $600 \mathrm{~mm} / \mathrm{min}$ |
| Number of passes | 1 |


| Rotational speed | $4000 \mathrm{~min}^{-1}$ |
| :--- | :---: |
| Depth of cut | 0.5 mm |
| Feed rate | $1200 \mathrm{~mm} / \mathrm{min}$ |
| Number of passes | 2 |

## Reference data - Surface roughness after deburring

| Material | A11 (red) | A21 (white) | A32 (blue) |
| :--- | :---: | :---: | :---: |
| A5052 | Approx. Ra $0.6 \mu \mathrm{~m}, \mathrm{Rz} 5.0 \mu \mathrm{~m}$ |  |  |
| S50C |  | Approx. Ra $0.2 \mu \mathrm{~m}, \mathrm{Rz} 1.6 \mu \mathrm{~m}$ |  |
| SUS304 |  |  | Approx. $\operatorname{Ra~} 0.3 \mu \mathrm{~m}, \mathrm{Rz} 2.4 \mu \mathrm{~m}$ |

## XEBEC Brush ${ }^{\text {TM }}$ Surface End Type

Cutter mark removal and polishing on sealing surfaces

## Applicable burr size

Burr thickness $\leq 0.1 \mathrm{~mm}$ (Burrs this size can be easily bent by fingernails)




Fig. 3

## Applicable equipment

This tool can be used with equipment that controls rotational speed.


Machining center


Lathe (with live tools)


Dedicated machine


Robot

Rotary tool (electric)

## Precautions for use

The grinding load must less be than 2 N for hand use. The brush will break if:

- used beyond the maximum rotational speed
- used beyond the maximum indentation load
- used with a pneumatic rotary tool


## Brushes

| Brush (color) | Product code | Brush dia. (mm) | Shank dia. Dc (mm) | Bristle length $\ell$ (mm) | Overall length L (mm) | Standard rotational speed $\left(\mathrm{min}^{-1}\right)$ | Maximum rotational speed $\left(\mathrm{min}^{-1}\right)$ | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A13 (pink) | A13-EB01S | ¢1 | ф3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A13-EB015S | ф1.5 | ф3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A13-EB02S | ¢2 | ¢3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A13-EB025S | ф2.5 | ф3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A13-EB03M | ¢3 | ф3 | 30 | 67 | 4000 | 6000 | 3 |
| A11 (red) | A11-EB01S | ф1 | ф3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A11-EB015S | ¢1.5 | ф3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A11-EB02S | ф2 | ¢3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A11-EB025S | ф2.5 | ¢3 | 15 | 52 | 7000-12000 | 15000 | 3 |
|  | A11-EB06M | ¢5 | ¢3 | 20 | 57 | 7000 | 12000 | 4 |
| A21 (white) | A21-EB06M | \$5 | ¢3 | 20 | 57 | 7000 | 12000 | 4 |
| A32 (blue) | A32-EB06M | \$5 | ¢3 | 20 | 57 | 7000 | 12000 | 4 |

■ Brush size is approximate as the tip expands with rotation.

## How to select

Refer to the chart below and select the brush color based on the workpiece material, burr thickness and surface roughness.


## XEBEC Brush ${ }^{\text {TM }}$ Surface Extra-Large

Deburring, cutter mark removal, surface polishing ( $\geq 100 \mathrm{~mm}$ )


## Applicable burr size

Burr thickness $\leq 0.2 \mathrm{~mm}$ (Burrs this size can be bent by fingernails)


## Applicable equipment

This tool can be mounted on equipment shown below.


Machining center


Lathe (with live tools)


Dedicated machine

## Tool composition

The brush main unit and slide ring are separate items.
Assemble the main unit and slide ring before use.


## Brushes

| Brush (color) | Product code | Brush diameter <br> $(\mathrm{mm})$ | Bristle length $\ell$ <br> $(\mathrm{mm})$ | Matching slide ring <br> (Product code) | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A} 11-\mathrm{CB} 125 \mathrm{M}$ | $\phi 125$ | 75 | SR125M | 5 |
|  | $\mathrm{~A} 11-\mathrm{CB} 165 \mathrm{M}$ | $\phi 165$ | 75 | SR165M | 5 |
|  | $\mathrm{~A} 11-\mathrm{CB} 200 \mathrm{M}$ | $\phi 200$ | 75 | SR200M | 5 |
| A 21 (white) | $\mathrm{A} 21-\mathrm{CB} 125 \mathrm{M}$ | $\phi 125$ | 75 | SR125M | 5 |
|  | $\mathrm{~A} 21-\mathrm{CB} 165 \mathrm{M}$ | $\phi 165$ | 75 | SR165M | 5 |
|  | $\mathrm{~A} 21-\mathrm{CB} 200 \mathrm{M}$ | $\phi 200$ | 75 | SR200M | 5 |
|  | $\mathrm{A} 32-\mathrm{CB} 125 \mathrm{M}$ | $\phi 125$ | 75 | SR125M | 5 |
|  | $\mathrm{~A} 32-\mathrm{CB} 165 \mathrm{M}$ | $\phi 165$ | 75 | SR165M | 5 |
|  | $\mathrm{~A} 32-\mathrm{CB} 200 \mathrm{M}$ | $\phi 200$ | 75 | SR200M | 5 |

Fig. 5
■ Brush size is approximate as the tip expands with rotation.

## Slide rings

| Product code | Brush diameter <br> $(\mathrm{mm})$ | Outer dia. Dc <br> $(\mathrm{mm})$ | Shank diameter <br> $(\mathrm{mm})$ | Overall length L <br> $(\mathrm{mm})$ | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SR125M | $\phi 125$ | $\phi 135$ | $\phi 25$ | 187 | 5 |
| SR165M | $\phi 165$ | $\phi 176$ | $\phi 25$ | 187 | 5 |
| SR200M | $\phi 200$ | $\phi 211$ | $\phi 25$ | 187 | 5 |

■ The slide ring consists of a ring, base holder and shank.

- Base holder and shank sizes are the same for all brush diameters. Ring size varies with brush diameter.

■ Combined weights of brushes and slide rings are: $\phi 125: 1920 \mathrm{~g}, \phi 165: 2320 \mathrm{~g}$ and $\phi 200: 2750 \mathrm{~g}$.


## Starting parameters

|  | Rotational speed ( $\mathrm{min}^{-1}$ ) |  |  | Depth of cut (mm) |  |  | Feed rate (mm/min) |  |  | Brush protrusion (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product code | Deburring | Cutter mark removal, polishing | Maximum | Vertical burrs | Horizontal burrs | Cutter mark removal, polishing | Burr thickness 0.05 mm | Burr thickness 0.1 mm | Cutter mark removal, polishing | Deburring | Cutter mark removal, polishing |
| A11-CB125M <br> A21-CB125M <br> A32-CB125M | 800 | 1000 | 1000 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 700 | 15 | 10 |
| A11-CB165M A21-CB165M A32-CB165M | 600 | 750 | 750 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 700 | 15 | 10 |
| $\begin{aligned} & \text { A11-CB200M } \\ & \text { A21-CB200M } \\ & \text { A32-CB200M } \end{aligned}$ | 480 | 600 | 600 | 0.5 | 1.0 | 0.5 | 4000 | 2500 | 650 | 15 | 10 |

## XEBEC Brush ${ }^{\text {TM }}$ Crosshole

Applicable burr size
Burr thickness $\leq 0.1 \mathrm{~mm}$ (Burrs this size can be easily Deburring, cutter mark removal, polishing on inner diameters \& counterbores ( $\leq \Phi 20 \mathrm{~mm}$ ) bent by fingernails)


## Applicable equipment

This tool is used on equipment with rotational speed control (> $6500 \mathrm{~min}^{-1}$ ).


Machining center


Lathe (with live tools)


Dedicated machine


Robot
Rotary tool (electric)

## Brushes

| Brush (color) | Product code | Brush dia. (mm) | Shank dia. Dc (mm) | Shank dia. Ds (mm) | Bristle length $\ell$ (mm) | Overall length L (mm) | Maximum rotational speed ( $\mathrm{min}^{-1}$ ) | Target hole diameter (mm) | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A12 (red) | CH-A12-1.5M | ф1.5 | ф2.5 | \$3 | 50 | 120 | 20000 | \$3.5-5 | 6 |
|  | CH-A12-3M-TL | \$3 | ¢4 | ¢3 | 50 | 120 | 14000 | ¢5-8 | 6 |
|  | CH-A12-3L-TL | \$3 | \$4 | \$4 | 50 | 170 | 12000 | ¢5-8 | 6 |
|  | CH-A12-5M-TL | \$5 | ¢6 | \$6 | 50 | 120 | 14000 | ¢8-10 | 6 |
|  | CH-A12-5L-TL | \$5 | \$6 | \$6 | 50 | 170 | 12000 | ¢8-10 | 6 |
|  | CH-A12-7M-TL | ¢7 | ¢8 | \$6 | 50 | 120 | 14000 | \$10-20 | 6 |
|  | CH-A12-7L-TL | \$7 | ¢8 | \$8 | 50 | 170 | 12000 | \$10-20 | 6 |
|  | CH-A12-11M | ¢11 | \$12 | \$12 | 50 | 120 | 14000 | \$14-20 | 6 |
|  | CH-A12-11L | ¢11 | \$12 | \$12 | 50 | 170 | 12000 | \$14-20 | 6 |
| A33 (blue) | CH-A33-3M | \$3 | ¢4 | \$3 | 60 | 130 | 14000 | \$5-8 | 6 |
|  | CH-A33-3L | \$3 | ¢4 | ¢4 | 60 | 180 | 12000 | ¢5-8 | 6 |
|  | CH-A33-5M | \$5 | ¢6 | \$6 | 60 | 130 | 14000 | ¢8-10 | 6 |
|  | CH-A33-5L | \$5 | \$6 | \$6 | 60 | 180 | 12000 | ¢8-10 | 6 |
|  | CH-A33-7M | \$7 | ¢8 | \$6 | 60 | 130 | 14000 | \$10-14 | 6 |
|  | CH-A33-7L | \$7 | \$8 | \$8 | 60 | 180 | 12000 | \$10-14 | 6 |
|  | CH-A33-11M | \$11 | \$12 | \$12 | 60 | 130 | 14000 | \$14-20 | 6 |
|  | CH-A33-11L | \$11 | \$12 | \$12 | 60 | 180 | 12000 | \$14-20 | 6 |

- Brush size is approximate as the tip expands with rotation.


## Precautions for use

The shank must be inserted $\geq 30 \mathrm{~mm}$ in the holder to secure it properly.

The brush will break if:

- used beyond the maximum rotational speed
- used with a pneumatic rotary tool
- rotated outside of the bore (outside workpiece)
- used with brush tip < 20 mm inside bore

The brush may break when used with:

- off-center or angled crossholes
- t-shaped holes, when secondary bore diameter $\geq$ main bore
- crossholes, when secondary bore diameter $\geq 70 \%$ main bore


Automation of crosshole deburring
Input shaft


Material: SCM Follows: Drilling Tool: CH-A12-7M-TL

Automation of crosshole deburring

Valve case


Material: Resin Follows: Drilling Tool: CH-A12-5M-TL

Before
Manual deburring by cutter was time-consuming. Cutter left scratches on inner surface.

After
Deburring inside the machine reduced cycle time significantly. No scratching on inner surface and finish quality is stable.

## How to use

Caution: Rotating the brush outside of the bore may damage the brush and cause injury to the operator.

| Step 1 | Step 2 Step 3 | Step 4 | Step 5 | Step 6 |
| :---: | :---: | :---: | :---: | :---: |



1. Insert the brush stationary into the bore.
2. Rotate the tool once past the crosshole.
3. Machine while pulling the brush back.
4. Machine while pushing the brush forward.
5. Stop the brush rotation.
6. Remove the brush when it is stationary.

## Machining parameter adjustments

## Rotational speed

Brush performance can be optimized by adjusting rotational speed in accordance with brush size, target hole diameter and brush wear. Refer below for recommended rotational speeds.


## CH-A33-3M/3L

Rotational speed ( $\mathrm{min}^{-1}$ )

> Hole dia.: \$5-8 mm

CH-A12-3M-TL/3L-TL Hole dia.: $\$ 5-8 \mathrm{~mm}$

CH-A12-5M-TL/5L-TL
Hole dia.: \$8-10 mm

Target hole diameter (mm)

CH-A33-5M/5L
Hole dia.: $\phi 8$ - 10 mm


CH-A33-7M/7L
Hole dia.: \$10-14 mm


CH-A12-7M-TL/7L-TL
Hole dia.: \$10-20 mm


## CH-A12-11M/11L

Hole dia.: $\phi 14$ - 20 mm


## CH-A33-11M/11L

Hole dia.: \$14-20 mm

Target hole diameter (mm)

- New O-----0 10 mm wear


## Feed rate

## 300 mm/min

## Rotational direction

Uniform deburring and edge quality can be achieved by rotating the tool in both clockwise and counter-clockwise directions.

## XEBEC Brush ${ }^{\text {TM }}$ Crosshole Extra-Large

## Applicable burr size

Burr thickness $\leq 0.1$ mm (Burrs this size can be easily
Deburring, cutter mark removal, polishing on inner diameters \& counterbores ( $\geq \phi 20 \mathrm{~mm}$ ) bent by fingernails)


## Applicable equipment

This tool is used on equipment with rotational speed control (> $\left.4000 \mathrm{~min}^{-1}\right)$.


Machining center


Lathe (with live tools)


Dedicated machine


Robot


## Tool composition

Brush and shank are sold separately. Assemble before use.
Brush Shank


## Brushes

| Brush (color) | Product code | Brush dia. <br> $(\mathrm{mm})$ | Bristle <br> length $\ell$ <br> $(\mathrm{mm})$ | Shank insertion <br> depth ds <br> $(\mathrm{mm})$ | Max. rotational <br> speed <br> $\left(\mathrm{min}^{-1}\right)$ | Target hole <br> diameter <br> $(\mathrm{mm})$ | Matching <br> shank | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CH-A34-15 | $\phi 15$ | 60 | 10 | 9000 | $\phi 20-25$ | $\mathrm{CH}-\mathrm{SH}-6$ | 7 |
|  | CH-A34-20 | $\phi 20$ | 60 | 16 | 9000 | $\phi 25-30$ | $\mathrm{CH}-\mathrm{SH}-8$ | 7 |
|  | CH-A34-25 | $\phi 25$ | 60 | 16 | 9000 | $\phi 30-35$ | $\mathrm{CH}-\mathrm{SH}-8$ | 7 |

Brush size is approximate as the tip expands with rotation.
■ Overall length of assembled brush and shank is 150 mm .

## Shanks

| Product code | Shaft dia. Ds <br> $(\mathrm{mm})$ | Shank length ls <br> $(\mathrm{mm})$ | Matching brush | Fig. |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}-\mathrm{SH}-6$ | $\phi 6$ | 80 | $\mathrm{CH}-\mathrm{A} 34-15$ | 8 |
| $\mathrm{CH}-\mathrm{SH}-8$ | $\phi 8$ | 86 | $\mathrm{CH}-\mathrm{A} 34-20, \mathrm{CH}-\mathrm{A} 34-25$ | 8 |

## Precautions for use

The shank must be inserted $\geq 30 \mathrm{~mm}$ in the holder to secure it properly.

The brush will break if:

- used beyond the maximum rotational speed
- used with a pneumatic rotary tool
- rotated outside of the bore (outside workpiece)
- used with brush tip < 20 mm inside bore

The brush may break when used with:

- crossholes larger than $\$ 12$

Contact XEBEC technical support before using on crossholes > $\$ 12$.


## Machining parameters

Brush performance can be optimized by adjusting rotational speed in accordance with brush size, target hole diameter, and brush wear. Refer below for recommended rotational speeds.

## CH-A34-20

Hole dia.: $\mathbf{~} 25$ - 30 mm


Target hole diameter (mm)

## CH-A34-25

Hole dia.: \$30-35mm

o…........ 20 mm wear

## Rotational speed:

$7000 \mathrm{~min}^{-1}$

## Feed rate:

300 mm/min

## Rotational direction:

Uniform deburring and edge quality can be achieved by rotating the tool in both clockwise and counterclockwise directions. Applicable materials:
Plastics, nonferrous materials, steel, stainless steel.

## XEBEC Brush ${ }^{\text {™ }}$ <br> TM Crosshole Extra-Long

Deburring, cutter mark removal, polishing on bores over $\phi 150 \mathrm{~mm}$ in depth


## Applicable equipment

This tool is used on full cover type equipment with rotational speed control (> $6500 \mathrm{~min}^{-1}$ ).



## Tool composition

Brush, collar and shank are sold separately.
Assemble before use.

## Brushes

| Brush (color) | Product code | Brush diameter (mm) | Shank diameter Ds (mm) | Overall length L (mm) | Maximum rotational speed $\left(\mathrm{min}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A12 (red) | * | ¢3 | ф4 | 400 | 12000 |
|  | * | ф5 | ¢6 | 400 | 12000 |
|  | * | ¢7 | ¢8 | 400 | 12000 |
|  | * | ¢11 | ¢12 | 400 | 12000 |
| A33 (blue) | * | ф3 | ¢4 | 410 | 12000 |
|  | * | ¢5 | ¢6 | 410 | 12000 |
|  | * | ¢7 | ¢8 | 410 | 12000 |
|  | * | \$11 | \$12 | 410 | 12000 |

■ This is a custom-made item. Contact XEBEC technical support for details.
■ Brush size is approximate as the tip expands with rotation.

## Precautions for use

The brush will break if:

- used beyond the maximum rotational speed
- used with a pneumatic rotary tool
- rotated outside of the bore (outside workpiece)

The brush may break when used with

- off-center or angled crossholes
- t-shaped holes, when the secondary bore diameter is >50 \% of the main bore
- crossholes, when the secondary bore diameter is $>25 \%$ of the main bore


## XEBEC Brush ${ }^{\text {TM }}$ Crosshole

How to select
Refer to the chart below and select the brush color based on the workpiece material, burr thickness and surface roughness.

| Workpiece material | Resin | Steel |
| :---: | :---: | :---: |
|  | Copper, Brass | Stainless steel |
|  | Aluminum |  |
|  |  | HRSA steel |
|  |  | Cast iron |
|  |  | Hard material |
| Burr size | Micro fine burrs |  |
|  | Burr thickness ( $\leq 0.1 \mathrm{~mm}$ ) |  |
|  |  |  |
| Achievable surface roughness | $\leq \mathrm{Ra} 0.1$ mm |  |
|  |  | $\geq \mathrm{Ra} 0.1$ mm |
|  |  |  |
| Brush (color) | A12 (red) | A33 (blue) |
|  |  | A34 (dark blue) |
| Grinding power |  | $\longrightarrow$ High |

- HRSA (heat resistant super alloy)


## Machining adjustments - Burrs remain

Take the following actions, if burrs remain despite using the correct brush and rotational speed for the given burr size.

## 1. Check the brush color

2. Increase rotational speed to the maximum

## 3. Increase the number of passes

## 4. Decrease the feed rate

## Machining adjustments - Extending tool life

Try the following, if tool life is short despite using the correct brush for the given burr size.

## 1. Decrease the rotational speed

## 2. Increase the feed rate

## Example

| Material | S45C |
| :--- | :---: |
| Follows | Drilling |
| Burr thickness | 0.1 mm |
| Main bore | $\phi 10 \mathrm{~mm}$ |
| Crosshole | $\phi 5 \mathrm{~mm}$ |
|  |  |
| Tool | $\mathrm{CH}-\mathrm{A} 12-5 \mathrm{M}-\mathrm{TL}$ |
| Rotational speed | $10000 \mathrm{~min}^{-1}$ |
| Feed rate | $300 \mathrm{~mm} / \mathrm{min}^{2}$ |
| Depth of cut | 1 mm |
| Wear amount | 10 mm out of 50 mm |

## Tool life <br> 4500 holes

- Tool life varies greatly depending on the material, machining conditions, and burr size and direction.

■ The above data is not guaranteed. Please use as a guide.

## XEBEC Brush ${ }^{\text {TM }}$ Wheel Type

Deburring, polishing on inner diameters, side walls, and outside diameter threads


## Applicable equipment

This tool can be mounted on equipment shown below.


Machining center


Lathe (with live tools)


Dedicated machine


## Tool composition

Brush and shank are sold separately.
Assemble before use.


Shank

## Brushes

| Brush (color) | Product code | Brush diameter <br> $(\mathrm{mm})$ | Number of <br> bundles | Matching shank | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A 11 (red) | $\mathrm{W}-\mathrm{A} 11-50$ | $\phi 50$ | 6 | W-SH-M/L | 9 |
|  | $\mathrm{~W}-\mathrm{A} 11-75$ | $\phi 75$ | 6 |  |  |

Shanks

| Product code | Shank diameter Ds <br> $(\mathrm{mm})$ | Shank length $\ell$ s <br> $(\mathrm{mm})$ | Fig. |
| :---: | :---: | :---: | :---: |
| $\mathrm{W}-\mathrm{SH}-\mathrm{M}$ | $\phi 8$ | 70 | 10 |
| $\mathrm{~W}-\mathrm{SH}-\mathrm{L}$ | $\phi 12$ | 150 | 10 |



Fig. 9

## Applications

Automation of thread deburring
Output shaft

Material: SCM
Follows: Turning
Tool: W-A11-50


Before unstable.

After
All burrs are removed and quality is stable.

A file was used to manually deburr the thread but failed to remove all burrs. Quality was

Material: S50C
Follows: End milling
Tool: W-A11-50


## Applicable burr size

Burr thickness $\leq 0.1 \mathrm{~mm}$ (Burrs this size can be easily bent by fingernails)


Automated deburring of face

Before
Burrs formed on the face were removed manually.

After $\qquad$
Burrs are completely removed inside the machining center.

As shown in the drawing at right, the best approach to removing burrs formed on surface $A$ is to place the center of the brush at a 45 -degree angle to the edge. Burrs are removed by rotating the brush both clockwise and counterclockwise.

If this is not possible, position the brush as show at far right. The brush should also be rotated in both clockwise and counter-clockwise directions.


## Machining parameters

## Starting parameters

| Product code | Cutting speed <br> $(\mathrm{m} / \mathrm{min})$ | Rotational speed <br> $\left(\mathrm{min}^{-1}\right)$ | Feed per bundle <br> $(\mathrm{mm} / \mathrm{bundle})$ | Depth of cut <br> $(\mathrm{mm})$ | Feed <br> $(\mathrm{mm} / \mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W-A11-50 | 250 | 1600 | 0.5 | 0.2 | 4800 |
| W-A11-75 | 250 | 1000 | 0.5 | 0.2 | 3000 |

## Maximum parameters

| Product code | Cutting speed <br> $(\mathrm{m} / \mathrm{min})$ | Maximum <br> rotational speed <br> $\left(\mathrm{min}^{-1}\right)$ | Feed per bundle <br> $(\mathrm{mm} / \mathrm{bundle})$ | Depth of cut <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: | :---: |
| W-A11-50 <br> W-A11-75 | $150-350$ | 3000 | $\leq 1.5$ | $\leq 0.5$ |

■ Bristle stiffness increases as brushes shorten with wear. Reduce the depth of cut if bristles break.

## Machining adjustments - Burrs remain

Take the following actions, if burrs remain despite using the recommended depth of cut for the given burr size.

## Increase the feed amount

Increase the feed amount in increments of 10 to 20 percent.

## Machining adjustments - Extending tool life

Try the following, if tool life is short despite using the correct brush for the given burr size.

## Increase the feed amount

Increase the feed rate in increments of 10 to 20 percent.

## Reference data - Tool life

It is not possible to remove burrs with brushes without rounding edges to some extent. Take the following actions to improve edge sharpness.

## Example

| Material S45C <br> Follows End milling <br> Burr thickness 0.1 mm <br> Tool path length $120 \mathrm{~mm} /$ piece <br>   <br> Tool $\mathrm{W}-\mathrm{A} 11-50$ <br> Cutting speed <br> (Rotational speed) $250 \mathrm{~m} / \mathrm{min}$ <br> $\left(1600 ~ \mathrm{~min}^{-1}\right)$ <br> Feed per bundle <br> (Feed rate) $0.7 \mathrm{~mm} / \mathrm{bundle}$ <br> $(7000 \mathrm{~mm} / \mathrm{min})$ <br> Depth of cut 0.2 mm <br> Wear amount 50 mm out of 75 mm |
| :--- |
| Tool life |

■ Tool life varies greatly depending on the material, machining conditions, and burr size and direction.

- The above data is not guaranteed. Please use as a guide

A built-in spring helps to maintain stable load, reducing the frequency of wear offsets and brush protrusion length adjustments.

BT Shank Type used with
XEBEC Brush Surface ( $\phi 6$ - 25)


## Applicable equipment [Straight Shank Type]

This holder can be used on equipment shown below.


Machining
center
 (with live tools)


Dedicated machine


## Applicable equipment [BT Shank Type]

This holder can be used with machine tools that are compatible with BT30/40 shanks.

## Straight Shank Type

| Product code | $\begin{array}{c}\text { Matching } \\ \text { brush dia. } \\ (\mathrm{mm})\end{array}$ | $\begin{array}{c}\text { Sleeve shank diameter } \\ (\mathrm{mm})\end{array}$ | $\begin{array}{c}\text { Maximum } \\ \text { rotational speed } \\ \left(\mathrm{min}^{-1}\right)\end{array}$ | Attachments | Fig. |
| :--- | :---: | :---: | :---: | :--- | :---: |
|  | $\phi 6$ | $\phi 6$ (use with bush 10) | 10000 | $\begin{array}{l}\text { 1. } \phi 6 \text { bush } \\ \text { 2. } \phi 8 \text { bush } \\ \text { 3. Low-pressure spring } \\ \end{array}$ | $\phi 15$ |
|  | $\phi 25$ | $\phi 6$ (use with bush 10) | 6000 | 11 |  |$\}$

- Installed when shipped.
- Attachments included when shipped.
- Optional $\$ 3$ bush is available.


## BT Shank Type

| Product code | Matching brush dia. (mm) | Sleeve shank diameter (mm) | Maximum rotational speed $\left(\mathrm{min}^{-1}\right)$ | Length under gauge line (mm) | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FH-BT30 | \$6 | \$6 (with \$6 bush0) | 10000 | 75 | 13 |
|  | \$15 | \$6 (with \$6 bush0) | 6000 |  |  |
|  | \$25 | ¢8 | 5000 |  |  |
| FH-BT40 | \$6 | ¢6 (with $\phi 6$ bush0) | 10000 | 60 | 14 |
|  | \$15 | \$6 (with $\phi 6$ bush0) | 6000 |  |  |
|  | \$25 | ¢8 | 5000 |  |  |

O \$6 bush sold separately.


Fig. 11

## Precautions for use

- Lower the tool vertically onto the workpiece.
- The tool cannot be used on surfaces that are discontinuous or have protrusions.
- The tool may not function correctly on a horizontal machining center when spring load is low.


## Mechanism

This tool has a built-in spring. The spring is compressed when the brush contacts the workpiece surface.


## How to use

## Product in use

(5)


(4)


The diagram to the left shows how to use the tool effectively.

1. Approach the workpiece surface from above without rotating the brush.
2. Set the depth of cut and compress the spring.
3. Rotate the brush and start feeding with the spring compressed.
4. Stop rotation and feed when finished machining.
5. Remove the brush upward from the workpiece surface.

## Unacceptable workpiece shapes



Avoid cavities and protrusions to ensure proper operation of the floating mechanism.

## FH-ST12-SL10

| Spring type | Outer diameter <br> $(\mathrm{mm})$ | Spring constant <br> $(\mathrm{N} / \mathrm{mm})$ | Overall length <br> $(\mathrm{mm})$ | Load by stroke <br> $(N)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 mm | 6 mm |  |
| Standard spring (installed) | $\phi 10$ | 0.30 | 40 | 4.5 | 6.3 |
| Low-pressure spring (attachment) | $\phi 10$ | 0.30 | 30 | 1.5 | 3.3 |
| High-pressure spring (attachment) | $\phi 10$ | 0.55 | 39 | 7.2 | 10.5 |
| Maximum load spring (sold separately) | $\phi 10$ | 3.03 | 30 | 15.2 | 33.4 |

FH-ST20-60/100 FH-BT30/40

| Load adjustment |  <br>  <br> (N) |  |  |
| :--- | :---: | :---: | :---: |
|  | 0 mm | 6 mm |  |
| Standard float | 2 | 6 | When load adjustment screw is flush with shaft end. |
| Higher float | 6 | 10 |  |

A built-in gear mechanism automatically adjusts brush protrusion length, reducing human error and providing consistent machining performance.


## Applicable equipment

This tool is used on equipment capable of precise angular control of the sleeve.


Sleeves

| Product code | Matching brush | $\begin{aligned} & \text { Sleeve } \\ & \text { outer dia. Dc } \\ & (\mathrm{mm}) \end{aligned}$ | Maximum outer dia. Df (mm) | Shank diameter Ds (mm) | Overall length L (mm) | Shank length $\ell$ s (mm) | Main body mass (g) | Maximum rotational speed $\left(\mathrm{min}^{-1}\right)$ | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XP-AUT06M | A13-CB06M | ¢14.2 | \$37 | ¢10 | 124.1 | 35.0 | 220 | 10000 | 15 |
|  | A11-CB06M |  |  |  |  |  |  |  |  |
|  | A21-CB06M |  |  |  |  |  |  |  |  |
|  | A32-CB06M |  |  |  |  |  |  |  |  |
| XP-AUT15M | A13-CB15M | ¢23.4 | \$37 | \$10 | 136.3 | 35.0 | 270 | 6000 | 15 |
|  | A11-CB15M |  |  |  |  |  |  |  |  |
|  | A21-CB15M |  |  |  |  |  |  |  |  |
|  | A32-CB15M |  |  |  |  |  |  |  |  |
| XP-AUT25M | A11-CB25M | Ф34.6 | \$60 | ¢16 | 189.0 | 41.5 | 795 | 5000 | 15 |
|  | A21-CB25M |  |  |  |  |  |  |  |  |
|  | A32-CB25M |  |  |  |  |  |  |  |  |
| XP-AUT40M | A11-CB40M | \$50.0 | \$60 | ¢16 | 189.0 | 41.5 | 910 | 3000 | 15 |
|  | A21-CB40M |  |  |  |  |  |  |  |  |
|  | A32-CB40M |  |  |  |  |  |  |  |  |

Fig. 15


## How to use

Mount the rack gear inside the machine.
The brush protrusion length is adjusted by rotating the side gear built inside the sleeve with the rack gear.


## Brush protrusion length

The brush protrusion length can be adjusted in increments of 0.05 mm .
It is possible to make an adjustment of up to 1 mm in a single pass. This allows adjustments to be made at a predetermined interval corresponding to tool wear.

## XEBEC Short BT Holder™

Compact tool holder whose length under the gauge line is 23.5 mm (including bush flange thickness 1.5 mm ). Optimal when space is limited.

Used with
XEBEC Brush Surface
XEBEC Self-Adjusting Sleeve
XEBEC Floating Holder


## Applicable equipment

This tool can be used with machine tools that are compatible with BT3O shanks.

## Tool outline



## XEBEC Back Burr Cutter ${ }^{\text {TM }}$

Ideal for deburring both front and back of drilled holes.

Applicable burr size
Burr thickness $\leq 0.2 \mathrm{~mm}$ (Burrs this size can be bent by fingernails)


## Applicable equipment

This tool is used on equipment with 3-axis simultaneous control.


Machining
center

[^0]



## Tool composition

Consists of a spherical deburring cutter and made-to-order tool path.

AITiCrN coated P:Steel M:Stainless steel K: Castiron S:Heat-resistant super alloy N: Non-ferrous metal

| Type | Product code | Cutter dia. Dc (mm) | Cutter rad. R (mm) | Neck dia. dn (mm) | Neck length L2 (mm) | Overall length L1 (mm) | Shank dia. Ds (mm) | Number of blades | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Short | XC-08-AS-3F | ф0.8 | 0.40 | ¢0.48 | 3.0 | 60 | ¢3.0 | 3 | 16 |
|  | XC-13-AS-3F | ¢1.3 | 0.65 | \$0.78 | 5.0 | 60 | \$3.0 | 3 | 16 |
|  | XC-18-AS-3F | ¢1.8 | 0.90 | \$1.10 | 6.0 | 60 | \$3.0 | 3 | 16 |
|  | XC-23-AS-3F | ф2.3 | 1.15 | \$1.40 | 7.5 | 70 | \$3.0 | 3 | 16 |
|  | XC-28-AS-3F | \$2.8 | 1.40 | \$1.70 | 9.0 | 70 | ¢4.0 | 3 | 16 |
|  | XC-33-AS-3F | \$3.3 | 1.65 | \$2.00 | 10.5 | 70 | \$4.0 | 3 | 16 |
|  | XC-38-AS-3F | ¢3.8 | 1.90 | \$2.40 | 12.0 | 70 | ¢4.0 | 3 | 16 |
|  | XC-48-AS-3F | ¢4.8 | 2.40 | \$3.00 | 15.0 | 70 | ¢6.0 | 3 | 16 |
|  | XC-58-AS-3F | ¢5.8 | 2.90 | \$3.50 | 18.0 | 70 | \$6.0 | 3 | 16 |
|  | XC-78-AS-3F | ¢7.8 | 3.90 | \$4.70 | 24.0 | 100 | ¢8.0 | 3 | 16 |
|  | XC-98-AS-3F | ¢9.8 | 4.90 | \$5.90 | 30.0 | 120 | \$10.0 | 3 | 16 |
| Regular | XC-08-A | ф0.8 | 0.40 | \$0.48 | 5.0 | 60 | \$3.0 | 2 | 16 |
|  | XC-13-A | \$1.3 | 0.65 | ¢0.78 | 8.0 | 60 | \$3.0 | 2 | 16 |
|  | XC-18-A | ¢1.8 | 0.90 | \$1.10 | 10.0 | 60 | ¢3.0 | 2 | 16 |
|  | XC-23-A | \$2.3 | 1.15 | \$1.40 | 12.5 | 70 | ¢3.0 | 2 | 16 |
|  | XC-28-A | \$2.8 | 1.40 | \$1.70 | 15.0 | 70 | \$4.0 | 2 | 16 |
|  | XC-33-A | \$3.3 | 1.65 | \$2.00 | 17.5 | 70 | ¢4.0 | 2 | 16 |
|  | XC-38-A | ¢3.8 | 1.90 | \$2.40 | 20.0 | 70 | \$4.0 | 2 | 16 |
|  | XC-48-A | ф4.8 | 2.40 | \$3.00 | 25.0 | 70 | \$6.0 | 2 | 16 |
|  | XC-58-A | ¢5.8 | 2.90 | \$3.50 | 30.0 | 70 | \$6.0 | 2 | 16 |
|  | XC-78-A | ¢7.8 | 3.90 | \$4.70 | 40.0 | 100 | \$8.0 | 3 | 16 |
|  | XC-98-A | ¢9.8 | 4.90 | \$5.90 | 50.0 | 120 | \$10.0 | 3 | 16 |
| Straight | XC-18-B | ¢1.8 | 0.90 | \$1.10 | - | 50 | \$1.1 | 2 | 17 |
|  | XC-23-B | \$2.3 | 1.15 | \$1.40 | - | 60 | \$1.4 | 2 | 17 |
|  | XC-28-B | \$2.8 | 1.40 | \$1.70 | - | 70 | ¢1.7 | 2 | 17 |
|  | XC-33-B | \$3.3 | 1.65 | \$2.00 | - | 80 | \$2.0 | 2 | 17 |
|  | XC-38-B | ¢3.8 | 1.90 | \$2.40 | - | 85 | \$2.4 | 2 | 17 |
|  | XC-48-B | ¢4.8 | 2.40 | \$3.00 | - | 105 | ¢3.0 | 2 | 17 |
|  | XC-58-B | \$5.8 | 2.90 | \$3.50 | - | 120 | ¢3.5 | 2 | 17 |
|  | XC-78-B | ¢7.8 | 3.90 | \$4.70 | - | 150 | \$4.7 | 3 | 17 |
|  | XC-98-B | ¢9.8 | 4.90 | \$5.90 | - | 180 | \$5.9 | 3 | 17 |

## Uncoated $\quad N$ Non-ferrous metal $O$ : Resin

| Type | Product code | Cutter dia. Dc <br> $(\mathrm{mm})$ | Cutter rad. R <br> $(\mathrm{mm})$ | Neck dia. dn <br> $(\mathrm{mm})$ | Neck length L2 <br> $(\mathrm{mm})$ | Overall length L1 <br> $(\mathrm{mm})$ | Shank dia. Ds <br> $(\mathrm{mm})$ | Number of <br> blades | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

A solution combining a made-to-order tool path program with a dedicated cutting tool for high quality finish, extended tool life and the world's fastest automated deburring of drill holes. The ready-to-use CNC program is easy to install and greatly reduces programming time.

## XEBEC Back Burr Cutter

This cutter is made of micro-grain cemented carbide for longer life. It is heat-resistant with a AITiCrN coating and can be used with a wide range of materials including non-ferrous metals, such as aluminum alloy, and heatsensitive materials such as titanium. Cutting performance is improved through optimal blade geometry that inhibits formation of secondary burrs.

## XEBEC Deburring Tool Path

Made-to-order CNC tool path program


High quality
An optimized tool path and use of the ideal approach angle enables uniform break width on edges, while inhibiting formation of secondary burrs.


Five different tool paths provide a choice of edge break widths. (Refer to p. 29 for cutter diameters and corresponding edge break widths.)

## World's fastest deburring

Cycle time is reduced because there is no wasted motion in the cutter path. Cycle time is up 10 times faster than conventional deburring tools.

Deburring tool comparison


[^1]
## Long tool life

Tool life is increased by continuous displacement of the cutter contact point.


Automation of deburring
Valve


Material: Free cutting steel Follows: Drilling
Tool: XC-18-A

Before
Deburring was done in 3 steps ( $\phi 2$ zero cut, nylon brush deburring, $\$ 3$ zero cut), with a different tool for each. This resulted in a long cycle time.

## After

Deburring is performed with a single cutter. Cycle time is 9 seconds shorter and tool cost is reduced.

## Automation of deburring

Industrial robot part


Material: SUS304 Follows: Tapping
Tool: XC-18-A

Before
A lengthy manual deburring was followed by a tap zero cut and air blow. This resulted in a very long cycle time.

After
XEBEC deburring tool path reduces the deburring time from 120 to 40 seconds. The workplace is safer as manual deburring is no longer used.

## Starting parameters



## Precautions for use

- XEBEC Back Burr Cutter is designed for CNC machines. Never use it as a hand tool.
- Turning on advanced preview control on the machine tool results in uniform edges.
- The machining error on holes must be kept as small as possible.


## Uncoated $\quad N:$ Non-ferrous metal $O$ : Resin

| Type | Product code | Cutter dia. Dc <br> $(\mathrm{mm})$ | Tool protrusion <br> length <br> $(\mathrm{mm})$ | Number <br> of blades | Rotational <br> speed n <br> $\left(\mathrm{min}^{-1}\right)$ | Feed rate <br> Vf <br> $(\mathrm{mm} / \mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Regular | XC-08-A-N | $\phi 0.8$ | 5Dc | 2 | 20000 | 650 |
|  | XC-13-A-N | $\phi 1.3$ | 5Dc | 2 | 20000 | 650 |
|  | XC-18-A-N | $\phi 1.8$ | 5Dc | 2 | 20000 | 650 |
|  | XC-23-A-N | $\phi 2.3$ | 5Dc | 2 | 18000 | 950 |
|  | XC-28-A-N | $\phi 2.8$ | 5Dc | 2 | 15000 | 1400 |
|  | XC-33-A-N | $\phi 3.3$ | 5Dc | 2 | 12700 | 1250 |
|  | XC-38-A-N | $\phi 3.8$ | 5Dc | 2 | 11000 | 1600 |
|  | XC-48-A-N | $\phi 4.8$ | 5Dc | 2 | 8500 | 1600 |
|  | XC-58-A-N | $\phi 5.8$ | 5Dc | 2 | 7000 | 1200 |
|  | XC-78-A-N | $\phi 7.8$ | 5Dc | 3 | 5400 | 1600 |
|  | XC-98-A-N | $\phi 9.8$ | 5Dc | 3 | 4300 | 1300 |

## Parameter adjustments

- Machining parameters will vary for the straight type when protrusion lengths other than 10D (shown in table) are used.
- Rotational speed and feed rates shown are intended as guides for setting starting parameters.
- In the event of abnormal vibration or noise, reduce the rotational speed and feed rate proportionally.
- If the maximum rotational speed and feed of the machine is below the starting parameters, reduce them both proportionally to the machine's capability.


## XEBEC Deburring Tool Path ${ }^{\text {TM }}$

An integral component of this deburring solution, XEBEC Deburring Tool Path is a made-to-order CNC tool path program that ensures optimal performance of the XEBEC Back Burr Cutter.

## Standard paths

Standard paths are readily available for the commonly encountered crosshole configurations shown below.

The same cutter can be used for many different types and sizes of hole. This reduces the number of tools in the ATC and the cycle time.

```
03_0.20_EdgeBreakAmount - Notepad
File Edit Format View Help
(INNER-1D10.-2D5.-T2.8-AR90.-E0
(EDGE BREAK AMOUNT 0.20)
(UPPER EDGE)
(INC)
(DOWN CUT)
```

X0.000YO.000Z0.000
X0.000Y0.000Z-2.741
X0.000Y1.33820.000
$X-0.274 Y-0.021 Z 0.013$
$X-0.262 Y-0.06170 .037$
$X-0.262 Y-0.06120 .037$
$X-0.242 Y-0.09720 .054$
$X-0.214 Y-0.12720 .064$


Slotted hole


Planar hole

Deburring amount and allowable cumulative error

| Product code | Cutter dia. Dc (mm) | Edge break length (mm) |  |  |  |  | Max. allowed accumulated variance (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |  |
| XC-08-AS-3F/A/A-N | ф0.8 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.03 |
| XC-13-AS-3F/A/A-N | Ф 1.3 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.05 |
| XC-18-AS-3F/A/B/A-N | \$1.8 | 0.07 | 0.09 | 0.11 | 0.13 | 0.15 | 0.08 |
| XC-23-AS-3F/A/B/A-N | ф2.3 | 0.07 | 0.09 | 0.11 | 0.13 | 0.15 | 0.09 |
| XC-28-AS-3F/A/B/A-N | \$2.8 | 0.08 | 0.11 | 0.14 | 0.17 | 0.20 | 0.10 |
| XC-33-AS-3F/A/B/A-N | \$3.3 | 0.08 | 0.11 | 0.14 | 0.17 | 0.20 | 0.11 |
| XC-38-AS-3F/A/B/A-N | ф3.8 | 0.09 | 0.13 | 0.17 | 0.21 | 0.25 | 0.12 |
| XC-48-AS-3F/A/B/A-N | ф4.8 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.15 |
| XC-58-AS-3F/A/B/A-N | ф5.8 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.18 |
| XC-78-AS-3F/A/B/A-N | ф7.8 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.18 |
| XC-98-AS-3F/A/B/A-N | ¢9.8 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.18 |

## Standard Path for Tapped Holes

| Tap size | Matching cutter <br> product code | Cutter dia. Dc <br> $(\mathrm{mm})$ | Deburring <br> amount <br> $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: |
| M3 | XC-23-AS-3F/A/B/A-N | $\phi 2.3$ | 0.11 |
| M4 | XC-28-AS-3F/A/B/A-N | $\phi 2.8$ | 0.14 |
| M5 | XC-33-AS-3F/A/B/A-N | $\phi 3.3$ | 0.14 |
| M6 | XC-38-AS-3F/A/B/A-N | $\phi 3.8$ | 0.17 |
| M8 | XC-48-AS-3F/A/B/A-N | $\phi 4.8$ | 0.20 |
| M10 | XC-58-AS-3F/A/B/A-N | $\phi 5.8$ | 0.20 |
| M12 | XC-78-AS-3F/A/B/A-N | $\phi 7.8$ | 0.20 |
| M16-24 | XC-98-AS-3F/A/B/A-N | $\phi 9.8$ | 0.20 |

Standard paths are available for thread sizes from M3 to M24.


■ Deburring amount is the chamfer width after an edge is deburred.

## XEBEC Burrless Chamfering Cutter ${ }^{\text {TM }}$ <br> Patented

Burrless chamfering with world's first V-shaped blade


## Applicable equipment

This tool can be mounted on equipment shown below.


Machining center


Lathe (with live tools)

## AITiCrN coated P:Steel M:Stainless steel K:Castiron S:Heat-resistant super alloy N: Non-ferrous metal

| Product code | Chamfer <br> alignment dia. <br> Dc <br> $(\mathrm{mm})$ | Shank diameter <br> Dcon <br> $(\mathrm{mm})$ | Overall length <br> LF <br> $(\mathrm{mm})$ | Neck length L1 <br> $(\mathrm{mm})$ | Maximum <br> depth of cut <br> APMX <br> $(\mathrm{mm})$ | Cutting angle <br> KAPR <br> $(\mathrm{deg})$. | Number of <br> blades | Chamfering <br> size <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XC-C-O3-M | $\phi 2$ | $\phi 6$ | 50 | 5 | 1 | 45 | 3 | $\mathrm{C} 0.3-\mathrm{C} 0.6$ |
| FC-C-O6-M | $\phi 4$ | $\phi 6$ | 60 | - | 2 | 48 |  |  |

## Uncoated $\quad N:$ Non-ferrous metal $O$ : Resin

| Product code | Chamfer <br> alignment dia. <br> Dc <br> $(\mathrm{mm})$ | Shank diameter <br> Dcon <br> $(\mathrm{mm})$ | Overall length <br> LF <br> $(\mathrm{mm})$ | Neck length L1 <br> $(\mathrm{mm})$ | Maximum <br> depth of cut <br> APMX <br> $(\mathrm{mm})$ | Cutting angle <br> KAPR <br> $(\mathrm{deg})$. | Number of <br> blades | Chamfering <br> size <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XC-C-O3-N | $\phi 2$ | $\phi 6$ | 50 | 5 | 1 | 45 | 3 | $\mathrm{C} 0.3-\mathrm{CO} .6$ |
| FC-C-O6-N | $\phi 4$ | $\phi 6$ | 60 | - | 2 | 48 |  |  |



Fig. 18


Fig. 19

The unique $V$-shaped blades eliminate the need for deburring after chamfering, reducing man-hours required for deburring, the cost of tools, and machining times.

## Reduction of deburring man-hours

The world's first V-shaped blades (patented) chamfer without creating secondary burrs, eliminating the need for deburring after chamfering.


## Reduced machining times

The multi-blade design enables high feed rates for reduced machining time.

## Reduction of tool costs

This cutter has twice the tool life of conventional chamfering tools.


Material:SUS304
Cutting distance (m)


## Flat tip

Flat tool tip prevents rounding and chipping of the tool tip, reducing tool length measurement errors and improving machining positional accuracy.


## Automation of chamfering

## Cooling water pipe block



Material: SUS3O4
Follows: Drilling
Tool: XC-C-06-M

Automation of chamfering

## Machine tool jig



## Before

Oil stone was used to remove
burrs after chamfering.
However, it scarred the surface.
After
Oil stone is no longer needed and quality is improved.

Material: S50C
Follows: End milling
Tool: XC-C-06-M

## How to use

Position the chamfering alignment diameter at the chamfering center point of the workpiece.


## Machining parameters

## Offsets

| Product code | Chamfering size <br> $(\mathrm{mm})$ | Offsets <br> (mm) |  |
| :---: | :---: | :---: | :---: |
|  |  | A | B |
|  | C 0.3 | 0.85 | 0.65 |
|  | C 0.4 | 0.80 | 0.70 |
| XC-C-06-M/N | C 0.5 | 0.75 | 0.75 |
|  | C 0.6 | 0.70 | 0.80 |
|  | C 0.7 | 1.65 | 1.35 |
|  | C 0.8 | 1.60 | 1.40 |
|  | C 0.9 | 1.55 | 1.45 |
|  | C 1.0 | 1.50 | 1.50 |
|  | C 1.1 | 1.45 | 1.55 |
|  | C 1.2 | 1.40 | 1.60 |
|  | C 1.3 | 1.35 | 1.65 |
|  | C 1.4 | 1.30 | 1.70 |
|  | C 1.5 | 1.25 | 1.75 |



## Starting parameters

| Product code | Workpiece material | Cutting speed (m/min) | Rotational speed $\left(\mathrm{min}^{-1}\right)$ | Feed rate (mm/min) | Feed per tooth (mm/t) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| XC-C-03-M | Steel | 60-100 | 12000 | 1800 | 0.05 |
|  | Stainless steel | 40-80 | 9000 | 1350 | 0.05 |
|  | 64 titanium | 45-60 | 8000 | 1200 | 0.05 |
|  | Inconel | 20-30 | 4000 | 600 | 0.05 |
| XC-C-03-N | Aluminum alloy | 200-300 | 40000 | 6000 | 0.05 |
|  | Resin | 60-100 | 12000 | 1800 | 0.05 |
| XC-C-06-M | Steel | 60-100 | 6300 | 1260 | 0.05 |
|  | Stainless steel | 40-80 | 4800 | 960 | 0.05 |
|  | 64 titanium | 45-60 | 4000 | 800 | 0.05 |
|  | Inconel | 20-30 | 2000 | 400 | 0.05 |
| XC-C-06-N | Aluminum alloy | 200-300 | 20000 | 4000 | 0.05 |
|  | Resin | 60-100 | 6300 | 1760 | 0.07 |

## XEBEC Stone ${ }^{\text {TM }}$ Flexible Shaft

Deburring and polishing front and back of crossholes, grooves and areas deep inside the workpiece. The spring steel shaft absorbs vibrations for a soft surface contact.

## 




## Applicable burr size

Burr thickness $\leq 0.2 \mathrm{~mm}$
(Burrs this size can be bent by fingernails)


Fig. 21
CH-PM-4B-L
CH-PM-5B-L
CH-PM-6B-L
CH-PM-10B-L


Fig. 23


Fig. 24

## Disc type - stone

| Equivalent grit <br> (color) | Product <br> code | Head dia. <br> $\times$ thickness <br> $(\mathrm{mm})$ | Max. rotational <br> speed <br> $($ min-1) | Fig. |
| :---: | :---: | :---: | :---: | :---: |
| $\# \# 220$ (gray) | CH-PM-14D | $\phi 14 \times 2$ | 5000 | 23 |

## Disc type - shaft

| Product <br> code | Shaft dia. <br> $(\mathrm{mm})$ | Overall <br> length <br> $(\mathrm{mm})$ | Mounting <br> screw | Max. rotational <br> speed <br> $\left(\mathrm{min}^{-1}\right)$ | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CH-D-SH | $\phi 2.3$ | 78 | $\mathrm{M} 2 \times 6$ | 5000 | 24 |

Deburring crosshole

## Aircraft pipe part



Material: Stainless steel Follows: Drilling
Tool: CH-PM-6B

Before
Deburring was carried out with a rubber grinding stone on a rotary tool. Finish quality varied depending on the workers' skill. 40 minutes was required to deburr 16 crossholes.

## After

The tool is inserted in a crosshole and retracted gently while tracing around the hole edge. Quality of finish is uniform and less time is required for deburring.

Deburring groove hole

## Shaft



Material: SCM
Follows: Drilling
Tool: CH-PM-145D

Before
An oil-impregnated grinding disc was used. The grinding stone shaft was short, making it difficult to access the deburring area. Tool life was poor.

## After

The longer shaft of the disc type grinding stone makes it easy to access the groove. The ceramic fiber stone is replaced less often because it has a longer tool life. The shaft is reusable. Only the grinding stone is replaced.

## How to use

The entire surface of the ceramic stone is abrasive and therefore can be used for deburring and polishing.


## Characteristics

The spring steel shaft absorbs vibrations for soft contact with the workpiece surface. The ceramic stone does not bounce around, thereby reducing the risk of scratching the workpiece. This makes this tool ideal for polishing and deburring areas that are deep inside the workpiece. The stone is safe to touch as it is not a cutting tool.


## Trial set

This set includes a disc type stone and shaft.

| Product code |
| :---: |
| CHPM14D-SET |

## \$2.3 to $\$ 3$ Collet Adapter

Adapts the $\phi 2.3$ shaft to fit on rotary tools with $\phi 3$ shanks.

| Product code |
| :---: |
| RMP3O24X |

## Precautions for use

A ceramic stone tool will be damaged when:

- used beyond the maximum rotation speed
- used with a pneumatic rotary tool

Users of the disc type should be careful to use only normal (clockwise) rotation. Reverse (counter-clockwise) rotation may cause the screw to loosen and the head to fly off.

## XEBEC Stone ${ }^{\text {TM }}$ Mounted Point

Suitable for use with pneumatic rotary tools at high rotational speed


## Applicable equipment

This tool can be mounted on rotary tools.


Rotary tool
Rotary tool
(electric)


Fig. 25

## Applicable burr size

Burr thickness $\leq 0.2 \mathrm{~mm}$
(Burrs this size can be bent
by fingernails)



Fig. 26


Fig. 27

| Equivalent <br> grit <br> (color) | Product code | Head size <br> $(\mathrm{mm})$ | Shank <br> dia. <br> $(\mathrm{mm})$ | Head <br> length <br> $(\mathrm{mm})$ | Overall <br> length <br> $(\mathrm{mm})$ | Maximum <br> rotational speed <br> $\left(\mathrm{min}^{-1}\right)$ | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AX-PM-3R | $\phi 3$ | $\phi 3$ | 20 | 48 | 60000 | 25 |
|  | AX-PM-5RF | $\phi 5$ | $\phi 3$ | 8 | 48 | 30000 | 26 |
|  | AX-PM-6T | $\phi 6$ | $\phi 3$ | 20 | 48 | 60000 | 27 |

## Applications

Deburring of edges


Material: Stainless steel Tool: AX-PM-6T

Deburring of parting lines


Material: Aluminum Tool: AX-PM-6T

Before
A rotary bar was used because the burrs were large. However, there was a safety problem.

After
The switch to abrasive stone makes the process safer to perform. The ceramic fiber stone's grinding power improves work efficiency.

## How to use

All surfaces of the ceramic stone are abrasive and all of them can be used for deburring and polishing. These ceramic stones are capable of withstanding high speed. As such they can be used with pneumatic rotary tools in addition to electric rotary tools.

## XEBEC Brush Length Adjustment Tool ${ }^{\text {TM }}$

A tool for quick in-machine brush length adjustment.

| Product code | Matching brush diameter <br> $(\mathrm{mm})$ | Built-in hexagonal wrench size <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: |
| XP-EZ-001 | $\phi 15 / \phi 25 / \phi 40 / \phi 60 / \phi 100$ | $1.5,2.0$ |

## How to use

- Move the brush rest using the adjustment knob to set the amount of brush protrusion.
- Tighten the fixing nut.
- Hold the unit in one hand and align the sleeve rest with the sleeve end.
- Loosen the adjustment screw on the sleeve to allow the bristles to drop to the brush rest.
- Tighten the adjustment screw to secure the brush in place.



## Mobile Micromotor System

Battery-powered rotary tool for use at workstations where power supply is unavailable.
The handpiece is ultra-lightweight, ideal for manual operation without causing fatigue.

| Product code | Matching shank <br> diameter <br> $(\mathrm{mm})$ | Maximum rotational <br> speed <br> $\left(\mathrm{min}^{-1}\right)$ | Standard components |
| :---: | :---: | :---: | :---: |
| M2P33STX | $\phi 3 \mathrm{~mm}$ shank | 30000 | Handpiece with stand, controller, <br> ON/OFF foot switch, power cable <br> for charging |

■ Capable of about 5 hours of continuous use on a single charge.


## Xebec Ceramic Stone ${ }^{\text {TM }}$ Meister Finish

- Excellent for mould polishing and deburring
- Uniform finishing attained by uniform fibre diameter
- High strength, not easy to break or tear
- Simple removal of troublesome fine burrs
- Higher finishing efficiency due to crystal structure of alumina fibres
- No dropping of abrasive grain particles that could create linear scratches
- Highly efficient finishing of coarse electro-discharge machining surfaces

| Profile | Size (mm) | Red Grit 1200 | $\begin{aligned} & \text { White Grit } \\ & 1000 \end{aligned}$ | Blue Grit 800 | $\begin{gathered} \text { Black Grit } \\ 600 \end{gathered}$ | Orange <br> Grit 400 | Light Brown Grit 300 | Dark Brown Grit 220 | $\begin{aligned} & \text { Purple Grit } \\ & 120 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | $0.3 \times 4 \times 100$ | 312862 | 312757 | 312943 | 312758 | 313024 | 313064 | 313105 | - |
| - | $0.4 \times 4 \times 100$ | 312863 | 312903 | 312944 | 312984 | 313025 | 313065 | 313106 | - |
|  | $0.5 \times 4 \times 100$ | 312610 | 312611 | 312612 | 312613 | 312614 | 312615 | 312616 | - |
|  | $0.5 \times 4 \times 150$ | 312864 | 312904 | 312945 | 312985 | 313026 | 313066 | 313107 | - |
|  | $0.5 \times 6 \times 100$ | 312617 | 312618 | 312619 | 312620 | 312621 | 312622 | 312623 | - |
|  | $0.5 \times 6 \times 150$ | 312865 | 312905 | 312946 | 312986 | 313027 | 313067 | 313108 | - |
|  | $0.5 \times 10 \times 100$ | 312866 | 312906 | 312947 | 312987 | 313028 | 313068 | 313109 | - |
|  | $0.5 \times 10 \times 150$ | 312698 | 312699 | 312700 | 312701 | 312702 | 312703 | 312704 | - |
|  | $0.8 \times 4 \times 100$ | 312624 | 312625 | 312626 | 312627 | 312628 | 312629 | 312471 | - |
|  | $0.8 \times 4 \times 150$ | 312718 | 312719 | 312720 | 312721 | 312722 | 312723 | 312724 | - |
|  | $0.8 \times 6 \times 100$ | 312630 | 312631 | 312632 | 312633 | 312634 | 312635 | 312636 | - |
|  | $0.8 \times 6 \times 150$ | 312867 | 312907 | 312948 | 312988 | 313029 | 313069 | 313110 | - |
|  | $0.8 \times 10 \times 100$ | 312637 | 312638 | 312639 | 312640 | 312641 | 312642 | 312643 | - |
|  | $0.8 \times 10 \times 150$ | 312868 | 312908 | 312949 | 312989 | 313030 | 313070 | 313111 | - |
| - | $1 \times 1 \times 100$ | 312869 | 312909 | 312950 | 312990 | 313031 | 313071 | 313112 | - |
| $\square$ | $1 \times 2 \times 100$ | 312870 | 312910 | 312951 | 312991 | 313032 | 313072 | 313113 | 313142 |
|  | $1 \times 4 \times 100$ | 312644 | 312645 | 312646 | 312647 | 312455 | 312452 | 312449 | 312740 |
|  | $1 \times 4 \times 150$ | 312725 | 312726 | 312727 | 312728 | 312729 | 312730 | 312731 | 313143 |
|  | $1 \times 6 \times 100$ | 312648 | 312649 | 312650 | 312651 | 312456 | 312453 | 312450 | 312741 |
|  | $1 \times 6 \times 150$ | 312871 | 312911 | 312952 | 312992 | 313033 | 313073 | 312752 | 313144 |
|  | $1 \times 8 \times 100$ | 312652 | 312653 | 312654 | 312655 | 312656 | 312657 | 312658 | 312742 |
|  | $1 \times 8 \times 150$ | 312872 | 312912 | 312953 | 312993 | 313034 | 313074 | 313114 | 313145 |
|  | $1 \times 10 \times 100$ | 312659 | 312660 | 312661 | 312662 | 312663 | 312454 | 312451 | 312743 |
|  | $1 \times 10 \times 150$ | 312873 | 312913 | 312954 | 312994 | 313035 | 313075 | 312465 | 313146 |
| $\square$ | $1.5 \times 1.5 \times 100$ | 312874 | 312914 | 312955 | 312995 | 313036 | 313076 | 313115 | - |
|  | $1.5 \times 4 \times 100$ | 312875 | 312915 | 312956 | 312996 | 313037 | 313077 | 313116 | 313147 |
|  | $1.5 \times 4 \times 150$ | 312876 | 312916 | 312957 | 312997 | 313038 | 313078 | 313117 | 313148 |
|  | $1.5 \times 6 \times 100$ | 312877 | 312917 | 312958 | 312998 | 313039 | 313079 | 312755 | 313149 |
|  | $1.5 \times 6 \times 150$ | 312878 | 312918 | 312959 | 312999 | 313040 | 313080 | 312734 | 313150 |
|  | $1.5 \times 10 \times 100$ | 312879 | 312919 | 312960 | 313000 | 313041 | 313081 | 313118 | 313151 |
|  | $1.5 \times 10 \times 150$ | 312880 | 312920 | 312961 | 313001 | 313042 | 313082 | 313119 | 313152 |
|  | $2 \times 2 \times 100$ | 312881 | 312921 | 312962 | 313002 | 313043 | 313083 | 313120 | - |
|  | $2 \times 4 \times 100$ | 312882 | 312922 | 312963 | 313003 | 312464 | 313084 | 313121 | 313153 |
|  | $2 \times 4 \times 150$ | 312883 | 312923 | 312964 | 313004 | 313044 | 313085 | 313122 | 313154 |
|  | $2 \times 6 \times 100$ | 312884 | 312924 | 312965 | 313005 | 313045 | 313086 | 313123 | 313155 |
|  | $2 \times 6 \times 150$ | 312885 | 312925 | 312966 | 313006 | 313046 | 313087 | 312753 | 313156 |
|  | $2 \times 10 \times 100$ | 312886 | 312926 | 312967 | 313007 | 313047 | 313088 | 313124 | 313157 |
|  | $2 \times 10 \times 150$ | 312887 | 312927 | 312968 | 313008 | 313048 | 313089 | 313125 | 313158 |
|  | $3 \times 4 \times 100$ | 312888 | 312928 | 312969 | 313009 | 313049 | 313090 | 313126 | 313159 |
|  | $3 \times 4 \times 150$ | 312889 | 312929 | 312970 | 313010 | 313050 | 313091 | 313127 | 313160 |
|  | $3 \times 6 \times 100$ | 312890 | 312930 | 312971 | 313011 | 313051 | 313092 | 313128 | 313161 |
|  | $3 \times 6 \times 150$ | 312891 | 312931 | 312972 | 313012 | 313052 | 313093 | 312754 | 313162 |
|  | $3 \times 10 \times 100$ | 312892 | 312932 | 312973 | 313013 | 313053 | 313094 | 313129 | 313163 |
|  | $3 \times 10 \times 150$ | 312893 | 312933 | 312974 | 313014 | 313054 | 313095 | 313130 | 313164 |


| Profile | Size (mm) | Pink Grit 3000 | Cream Grit 2000 | Yellow Grit 1500 |
| :---: | :--- | :---: | :---: | :---: |
| $\square$ | $1 \times 1 \times 100$ | 313165 | 313167 | 313169 |
| $\square$ | $1 \times 2 \times 100$ | 313166 | 313168 | 313170 |
| $\square$ | $1 \times 4 \times 100$ | - | - | 313175 |
| $\square$ | $1 \times 6 \times 100$ | - | - | 313176 |
| $\square$ | $1 \times 10 \times 100$ | - | - | 313173 |

Xebec Ceramic Stone ${ }^{\text {TM }}$ Meister Finish continued


## Xebec Ceramic Stone ${ }^{\text {TM }}$ Heat-Resistant

The Heat-Resistant range of Xebec Ceramic Stones offer resistance to temperatures up to $200^{\circ} \mathrm{C}$. Having the same performance as the MEISTER range of ceramic stones and are most suitable for removing EDM scales. The Heat-Resistant range has been developed for prolonged use with Ultrasonic Machines.

- Same performance as Xebec Meister Finish ceramic stones (Doesn't break, doesn't crack, excellent sharpness)

- Heat resistant up to $200^{\circ} \mathrm{C}$
- Ideal for prolonged use with ultrasonic tools
- Suitable for removing EDM scales
- Can lap deep slits for ribs

| Profile | Size (mm) | Purple <br> Grit 120 | Brown <br> Grit 220 | Orange Grit <br> $\mathbf{4 0 0}$ | Blue <br> Grit 800 | Red <br> Grit $\mathbf{1 2 0 0}$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  | $1 \times 4 \times 100$ | 312744 | 312673 | 312854 | 312672 | 312671 |
|  | $1 \times 6 \times 100$ | 312745 | 312676 | 312855 | 312675 | 312674 |
|  | $1 \times 10 \times 100$ | 312705 | 312717 | 312856 | 312716 | 312715 |
|  | $2 \times 4 \times 100$ | 312746 | 312679 | 312857 | 312678 | 312677 |
| $\square$ | $2 \times 6 \times 100$ | 312747 | 312682 | 312858 | 312681 | 312680 |
|  | $2 \times 10 \times 100$ | 312756 | 312706 | 312707 | 312708 | 312709 |

## Xebec Ceramic Stone ${ }^{\text {TM }}$ Diamond

- Efficiently and cleanly polishes materials harder than HRC57 such as cemented carbide and hardened steel (SKD, DC, STAVAX, HPM, ASP etc)
- Suitable for removing EDM scales, polishing ribs and deburring from edges and corners
- Both the Stick and the Rod types can be used to polish with the tip or the sides of the tools
- More efficient than electroplated diamond files and hand lappers
- Can polish efficiently wet or dry
- Can be used even more efficiently when attached to tools (electric, air or ultrasonic)
- Can be processed into the desired shape, such as a thinner tip

| Profile | Size (mm) | Purple Grit <br> $\mathbf{2 0 0}$ | Brown Grit <br> $\mathbf{4 0 0}$ | Blue <br> Grit $\mathbf{8 0 0}$ | Red <br> Grit $\mathbf{1 2 0 0}$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  | $1 \times 4 \times 100$ | 312687 | 312686 | 312685 | 312859 |
|  | $1 \times 6 \times 100$ | 312690 | 312689 | 312688 | 312860 |
|  | $1 \times 10 \times 100$ | 312693 | 312692 | 312691 | 312861 |
|  | $3 \times 50$ | - | 312696 | - | - |
|  | $3 \times 100$ | - | 312697 | - | - |

## Xebec Ceramic Stone ${ }^{\text {TM }}$ Soft

- Rubber binder allows soft contact and fits into a workpiece

| Profile | Size (mm) | Grit 1200 |
| :---: | :--- | :---: |
|  | $2 \times 6 \times 100$ | 312735 |
|  | $3 \times 100$ | 312750 |



Stone Holders

| Holder Type |  | Description |  |  | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Double <br> Enders <br> (Type B) | Will accommodate pencil stones as well as small round and square stones up to $6 \times 6 \mathrm{~mm}$. Available in three colours (blue, black and red) that may be used to distinguish one grit or grade of stone from another. Set of three (Code: 311506) contains one of each colour Measure 181 mm overall length. |  |  | Blue - 311503 |
|  |  |  |  |  | Black - 311507 |
|  |  |  |  |  | Red - 311508 |
| \% | Round Holder |  | For handheld work with ceramic stones. Available in 1, 2, 4, 6 and 10 mm flat sizes, 3 mm round or 0.5 mm and 0.9 mm square sizes. Measures approximately 336 mm long. | 3 mm | 311509 |
| FI | Square Holder |  |  | 0.5 mm | 311510 |
|  |  |  | 0.9 mm | 311511 |
|  | Flat Holder 1-10mm |  |  | 1 mm | 311512 |
|  |  |  | 2 mm | 311513 |
|  |  |  | 4 mm | 311514 |
|  |  |  | 6 mm | 311515 |
|  |  |  | 10 mm | 311516 |
|  | Super Stone Holder Kit |  |  | Set of 3 for Super Stones. 4, 6 and 1 and from 0.8 - | m wide m thick. | 321511 |

## Tungsten Carbide Rotary Burrs

| Profile / Shape |  | Size (mm) |  |  |  | Type |  | Code | Set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | d1 | 11 | d2 | 12 |  |  |  |  |
|  | - ¢0, | 12.7 | 25.0 | 6.0 | 70.0 | Brazed (Cut 5) |  | * | Power Cut Burr Set 5pc ( 6 mm Shank/Cut 5) Code: 321721 |
|  | $\square$ - | 12.7 | 25.0 | 6.0 | 70.0 |  |  | 321726 |  |
|  |  | 12.7 | 25.0 | 6.0 | 70.0 |  |  | 321727 |  |
|  | \% 8 | 12.7 | 25.0 | 6.0 | 70.0 |  |  | 321728 |  |
|  |  | 12.7 | 32.0 | 6.0 | 77.0 |  |  | 321729 |  |
|  | Imenemesemer | 3.0 | 14.0 | 3.0 | 38.0 |  | Solid (Cut 6) | 321730 | Burr Set 10pc (3mm Shank/Cut 6) Code: $\mathbf{3 2 1 7 2 2}$ |
|  |  | 3.0 | 14.0 | 3.0 | 38.0 |  |  | 321731 |  |
|  | $\square$ | 3.0 | 2.5 | 3.0 | 38.0 |  |  | 321732 |  |
|  | $\square 3$ | 3.0 | 6.0 | 3.0 | 38.0 |  |  | 321733 |  |
|  |  | 3.0 | 14.0 | 3.0 | 38.0 |  |  | 321734 |  |
|  |  | 3.0 | 14.0 | 3.0 | 38.0 |  |  | 321735 |  |
|  | 5 | 3.0 | 6.0 | 3.0 | 38.0 |  |  | 321736 |  |
|  | \% | 3.0 | 14.0 | 3.0 | 38.0 | Angle (8) |  | 321737 |  |
|  | Prestrsors | 3.0 | 11.0 | 3.0 | 38.0 | Angle (14*) |  | 321738 |  |
|  | Pin | 3.0 | 4.0 | 3.0 | 38.0 | Angle (10 ${ }^{\circ}$ ) |  | 321739 |  |
|  |  | 1.0 | 4.0 | 3.0 | 38.0 |  |  | 321740 |  |
|  |  | 1.5 | 4.0 | 3.0 | 38.0 |  |  | 321741 |  |
|  |  | 1.0 | 4.0 | 3.0 | 38.0 |  |  | 321742 |  |
|  |  | 1.5 | 4.0 | 3.0 | 38.0 |  |  | 321743 |  |
|  |  | 1.0 | 0.9 | 3.0 | 38.0 |  | Solid (Cut 2) | 321744 | Micro Burr Set 10pc (3mm Shank/Cut 2 Micro) Code: $\mathbf{3 2 1 7 2 3}$ |
|  |  | 1.5 | 1.4 | 3.0 | 38.0 |  |  | 321745 |  |
|  | $\underline{\square}$ | 1.5 | 4.0 | 3.0 | 38.0 |  |  | 321746 |  |
|  | $\square$ | 1.5 | 4.0 | 3.0 | 38.0 | Angle ( $16^{\circ}$ ) |  | 321749 |  |

* Available in Power Cut Burr Set



# Kemet International Ltd. Subsidiary Companies 

Netherlands<br>Kemet Europe B.V

## China

Kemet China Ltd

Singapore
Kemet Far East Pte Ltd

## Malaysia

Kemet Precision (M) SDN BHD

Japan / Korea
Kemet Japan / Kemet Korea

## Australia

Kemet Australia Pty Ltd

Kemet Products are available through a worldwide Network of Authorised Distributors in
Europe
Asia

Africa
Americas
Middle East
Australasia


[^0]:    t

[^1]:    SUS304
    Planar hole: $\$ 8 \times 10 t$

